Transformations of Assembly Number for 4-Regular Graphs
نویسندگان
چکیده
Simple assembly graphs characterize the process of DNA recombination in living cells. The number, number distinct Hamiltonian sets polygonal paths, one-sided and middle additivity a graph are important characteristics such graphs. This paper investigates transformations simple that allow one to increase their numbers or obtain additive Also minimum loops must be added edges tangled cord order its by 1 is computed.
منابع مشابه
on the total domatic number of regular graphs
a set $s$ of vertices of a graph $g=(v,e)$ without isolated vertex is a {em total dominating set} if every vertex of $v(g)$ is adjacent to some vertex in $s$. the {em total domatic number} of a graph $g$ is the maximum number of total dominating sets into which the vertex set of $g$ can be partitioned. we show that the total domatic number of a random $r$-regular graph is almost...
متن کاملConstructions of antimagic labelings for some families of regular graphs
In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.
متن کاملSemi-regular graphs of minimum independence number
There are many functions of the degree sequence of a graph which give lower bounds on the independence number of the graph. In particular, for every graph G, α(G) ≥ R(d(G)), where R is the residue of the degree sequence of G. We consider the precision of this estimate when it is applied to semi-regular degree sequences. We show that the residue nearly always gives the best possible estimate on ...
متن کاملThe Chromatic Number of Random Regular Graphs
Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k + 1, or k + 2.
متن کاملThe Domatic Number of Regular Graphs
The domatic number of a graph G is the maximum number of dominating sets into which the vertex set of G can be partitioned. We show that the domatic number of a random r-regular graph is almost surely at most r, and that for 3-regular random graphs, the domatic number is almost surely equal to 3. We also give a lower bound on the domatic number of a graph in terms of order, minimum degree and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2022
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-022-05795-y